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Abstract

This paper has a dual purpose: it presents a multidomain Chebyshev method for the solution of the two-dimensional

reactive compressible Navier–Stokes equations, and it reports the results of the application of this code to the numerical

simulations of high Mach number reactive flows in recessed cavity. The computational method utilizes a newly derived

interface boundary conditions as well as an adaptive filtering technique to stabilize the computations. The results of the

simulations are relevant to recessed cavity flame-holders.
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1. Introduction

The efficacy of spectral methods for the numerical solution of highly supersonic, reactive flows had been

previously reported in the literature. Don and Gottlieb [7,8] simulated interactions of shock waves with

hydrogen jets and obtained results showing the rich dynamics of the mixing process as well as the very
complex shock structures. Don and Quillen [9] studied the interaction of a planar shock with a cylindrical

volume of a light gas and showed that the spectral methods used gave good results for the flows with the

shocks and complicated non-linear behaviors. In fact the results compared favorably to ENO schemes.

The methods reported above were based on Chebyshev techniques in one domain. In order to extend the

utility of spectral methods to complex domains, multidomain techniques have to be considered. The main

issue here is the stable imposition of the interface boundary conditions, and in this paper we consider

mainly the penalty method, introduced for hyperbolic equations by Funaro and Gottlieb [10,11].

There is an extensive literature on the subject: Hesthaven [13–15] applied penalty BC for Chebyshev
multidomain methods using the characteristic variables. Carpenter et. al. [4,21,22] used it in conjunction

with compact finite difference schemes, going from a scalar model equation to the full N–S equations in
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general coordinate systems. Carpenter et al. [5] demonstrated the conservation properties of the Legendre

multidomain techniques.

In the current work we follow the same methodology but in the context of supersonic combustion. We

formulate the stable interface conditions based on the penalty method in a conservative form for both Euler

and Navier–Stokes equations in two-dimensional Cartesian coordinates. We derive stability conditions,

independent on the local flow properties, for the penalty parameters for the Legendre spectral method. We

also present here a new adaptive filtering technique that stabilize the spectral scheme when applied to

supersonic reactive flows.
Implementing this method, we consider supersonic combustion problems in recessed cavities in order to

establish the efficacy of recessed cavity flame-holders.

We consider two different cases: (1) non-reactive flows with two chemical species and (2) reactive flows with

four chemical species.

Recessed cavities provide a high temperature, low speed recirculating region that can support the pro-

duction of radicals created during chemical reactions. This stable and efficient flame-holding performance by

the cavity is achieved by generating a recirculation region inside the cavity where a hot pool of radicals forms

resulting in reducing the induction time and thus obtaining the auto-ignition [2,29]. Experiments have shown
that such efficiency depends on the geometry of the cavity such as the degree of the slantness of the aft wall

and the length to depth ratio of cavity L=D. Thus one can optimize the flame-holding performance by

properly adjusting the geometrical parameters of the cavity flame-holder system for a given supersonic flight

regime. There are two major issues of such cavity flame-holder system that need to be investigated: (1) what is

the optimal angle of the aft wall for a given L=D? and (2) how does the fuel injection interact with cavity flows?

An answer to these questions require both a comprehensive laboratory and numerical experiments.

There have been previous numerical studies on these questions, many of them rely on the turbulence

models. Rizzetta [23] used a modification of the Baldwin–Lomax algebraic turbulence model. Davis and
Bowersox [6] also used Baldwin–Lomax model. Zhang et.al. [30] used Wilcox j–x turbulence model. Baurle

and Gruber [3] used the Menter model. Although the use of the turbulence models can make it possible to

handle the compressible supersonic shear flows, the results are quite model-dependent as they require

parametric assumptions. In this work, we solve the full compressible Navier–Stokes equations with

chemical reactions without any turbulence model, using a multidomain spectral method.

Results of several numerical studies including the present study have shown that the stability of the re-

circulation inside cavity is enhanced for the lower angle of cavity compared to the rectangular cavity. The

present study, however, gives more accurate and finer details of the fields than those done by lower order
numerical experiments.We show that a stationary recirculation region is not formed inside the cavity contrary

towhat the lower order schemes predict.Aquantitative analysismade in this study shows that the lower angled

wall of the cavity reduces the pressure fluctuations significantly inside the cavity for the non-reactive flows.We

obtained a similar result for the reactive flows with the ignition of the fuel supplied initially in the cavity.

The rest of this paper is organized as follows. In Section 2 the governing equations are given. In Section 3

we describe the numerical method used in this work. In this Section we present the adaptive filtering used to

remove the high frequency mode that causes the instability due to the non-smoothness of the flow, and we

derive stable penalty interface conditions. In Section 4 the system of the supersonic recessed cavity com-
bustor is described. In Section 5 the main results of this work are given and discussed.
2. The governing equations

In this work, we consider the compressible Navier–Stokes equations in the presence of the chemical

reactions. Since hydrogen is used as a fuel in our numerical experiments, four chemical species are con-

sidered, i.e., H2, O2, H2O and N2 with the chemical reaction between hydrogen and oxygen gases:
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2H2 þO2 � 2H2O ð1Þ

The two-dimensional compressible Navier–Stokes equations in conservative form can be written as

oq
ot

þ oF
ox

þ oG
oy

¼ oFm
ox

þ oGm

oy
þ C: ð2Þ

The state vector, q, and the inviscid fluxes, F and G, are given by

q ¼

q
qu
qv
E
qf

0BBBB@
1CCCCA; F ¼

qu
qu2 þ P
quv

ðE þ P Þu
qfu

0BBBB@
1CCCCA; G ¼

qv
quv

qv2 þ P
ðE þ P Þv

qfv

0BBBB@
1CCCCA: ð3Þ

Here q is the density, u and v are the mean mixture velocity components of flow, E is the total internal

energy and P is the pressure. The mass fraction vector, is f ¼ ðf1; f2; f3; f4ÞT and the column vectors fu and fv
are composed of the specific momentum of ith species

fui ¼ fiðuþ ~uuiÞ; fvi ¼ fiðvþ ~vviÞ: ð4Þ

The velocity field ð~uui; ~vviÞ of the ith species is the drift velocity relative to the mean mixture velocity ðu; vÞ and
is determined by

ð~uui; ~vviÞ ¼
l
qSc

rfi: ð5Þ

Here l is the mixture dynamic viscosity to be determined in (11), and Sc is the Schmidt number which is

taken to be 0.22. The viscous fluxes, Fm and Gm, are given by

Fm ¼

0

sxx
syx

usxx þ vsyx þ l
�CCp

Pr
Tx � q

P4

i¼1 hi~uuifi
0

0BBBB@
1CCCCA;
Gm ¼

0

sxy
syy

usxy þ vsyy þ l
�CCp

Pr
Ty � q

P4

i¼1 hi~vvifi
0

0BBBB@
1CCCCA; ð6Þ

where 0 ¼ ð0; 0; 0; 0ÞT, T is the temperature, �CCp is the mixture specific heat at constant pressure, Pr is the
Prandtl number (which is taken to be 0.72) for the normal air and hi is the specific enthalpy of the ith species

and given by

hi ¼ h0i þ
Z T

0

CpiðsÞds:

where h0i is the reference enthalpy of the ith species and the specific heat of the ith species at constant

pressure, Cpi is represented as a fourth-order polynomial of T (see [20]). The elements of the viscous stress

tensor are given by
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sxixj ¼ l
oui
oxj

�
þ ouj

oxi

�
þ dijk

X2

k¼1

ouk
oxk

; ð7Þ

where d is the Kronecker delta symbol, and k is the bulk viscosity which is taken to be � 2
3
l under the

Stokes hypothesis.

The equation of state is given by the assumption of the perfect gas law

P ¼ q�RRT ¼ RT
X4

i¼1

qfi=Mi; ð8Þ

where �RR is a mixture gas constant with the universal gas constant R and Mi is the molecular weights of ith
species. The energy E is given by

E ¼ q
Z T

0

�CCpðsÞds� P þ 1

2
qðu2 þ v2Þ þ

X4

i¼1

qfih0i ; ð9Þ

where the mixture specific heat at constant pressure is given by

�CCp ¼
X4

i¼1

Cpifi=Mi: ð10Þ
2.1. The chemical models

We use the same models as in [7]. Each chemical species has different dynamical viscosity li based on

Sutherland�s law and we obtain the mixture viscosity l by Wilke�s law [28], i.e.,

li

l0i

¼ T
T0i

� �3=2 T0i þ Si
T þ Si

� �
l ¼
X4

i¼1

lifi=MiP4

j¼1 fj=Mj/ij

; ð11Þ
/ij ¼
1þ ½ðli=ljÞðfj=fiÞ�

1=2ðMi=MjÞ1=4
� �2

½8ð1þ ðMi=MjÞÞ�1=2
:

Here l0i
, T0i and Si are constants. A modified Arrhenius Law gives the equilibrium reaction rate ke, the

forward reaction rate kf and the backward reaction rate kb as

ke ¼ AeT expð4:60517ðEe=T � 2:915ÞÞ;
kf ¼ Af expð�Ef=ðRT ÞÞ;
kb ¼ kf=ke;

where the activation energy Ee ¼ 12925, Ef ¼ 7200 and the frequency factor Ae ¼ 83:006156, Af ¼
5:541� 1014.

The species are ordered as follows: (H2, O2, H2O, N2), and the law of mass action is used to find the net

rate of change in concentration of ith species _CCi by the single reaction (1), i.e.,
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_CC1 ¼ 2ðkf ½H2�2½O2� � kb½H2O�2Þ;
_CC2 ¼ �ðkf ½H2�2½O2� � kb½H2O�2Þ;
_CC3 ¼ 2ðkf ½H2�2½O2� � kb½H2O�2Þ;

where ½�� denoted the net rate of change in concentration.

Finally, the chemical source term C in (2) is given by

C ¼ ð0; 0; 0; 0; _CC1M1; _CC2M2; _CC3M3; _CC4M4ÞT; ð12Þ

where _CCi is the net rate of change in concentration of ith species by the reaction.

In Appendix C, a table of all the necessary coefficients and constants used for the reactive Navier–Stokes

equations with species (H2, O2, H2O, N2) are given.
3. The multidomain spectral method

In this section we describe the two crucial components of the Chebyshev multidomain code used in our
work, i.e., the adaptive filtering and the penalty method for the stable interface conditions.

3.1. The adaptive filtering

It is well known that when pseudospectral methods are applied to nonlinear problems instabilities may

occur. One of the ways to stabilize the spectral scheme is by adding a superviscosity term, or equivalently

using low pass exponential filters.

Consider the system

ou
ot

¼ of ðuÞ
ox

: ð13Þ

The pseudospectral method involves an interpolation operator IN that interpolates a function in the Gauss

Lobato points (these relate to the zeroes of the derivative of Chebyshev or Legendre polynomials and
include the boundaries or equally spaced points for the Fourier method). We seek a polynomial (or trig-

onometrical polynomial) uN such that

ouN
ot

¼ oINf ðuN Þ
ox

: ð14Þ

In the spectral superviscosity method we add a viscosity term such that

ouN
ot

¼ oINf ðuN Þ
ox

þ �NSVuN : ð15Þ

Here �N � ð1=N 2s�1Þ and the viscosity term SV is given as follows: it is

ð�1Þs�1 o2s

ox2s

for the Fourier method,

ð�1Þs�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p o

ox

� �2s

for the Chebyshev and
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o

ox
ð1

�
� x2Þ o

ox

�s

for the Legendre method. In order for this term to conform to the spectral accuracy, the order s must be

proportional to N , the number of polynomials (or grid points) in the approximation. Thus if one refines the

mesh the viscosity changes.
The theory developed by Tadmor [24], Maday and Tadmor [19], Maday et al. [18] and Ma [17] indicate

that the numerical solution for the scalar case converges to the correct entropy condition. Carpenter et al.

[5] demonstrated that even for systems, if the solution of (15) converges it converges to the correct entropy

solution.

We note here that the parameter s can be a function of the spatial station x. This means that in different

regions one uses different orders of the viscosity terms. Thus in the presence of local sharp gradients one

should reduce the order of the filter (but it still should be an increasing function of N ).

To understand the relationship between the superviscosity method and the filtering method used in this
paper, let

uN ðx; tÞ ¼
XN
k¼0

akðtÞ/kðxÞ;

where /k are the basis function used that can be Fourier, Chebyshev or Legendre polynomial. Also, let

bkða0; . . . ; aNÞ be the coefficients in the expansion

INf ðuNÞ ¼
XN
k¼0

bkðtÞ/kðxÞ:

Then (15) can be written as

oak
ot

¼ bk � c�Nk2sak: ð16Þ

One gets

akðt þ DtÞ ¼ expð�c�Nk2sDtÞakðtÞ þ
Z tþDt

t
exp½�c�Nk2sðt þ Dt � sÞ�bkðsÞds:

Thus it is equivalent to the exponential filter, where both the solution and the derivatives are filtered.

We define the local adaptive filter by

ur ¼
XN
k¼0

r
k
N

� �
akðtÞ/ðxÞ: ð17Þ

Here

rðxÞ ¼ expð�ax2csÞ; ð18Þ

where c ¼ cðxÞ changes in the domain. In practice one computes different ur and picks the one with heavy

filtering in the presence of large gradients and the light filtered solution in smooth region. In Sections 4 and

5.1 we will show how we choose the different regions. As an alternative, consider again (15). Since �N is very

small, the superviscosity term can be applied with lower order finite difference scheme. There were no

difference in the results between these two ways of applying the schemes.

The local adaptive filtering keeps the scheme stable, without dissipating fine scale features away from this

region. As discussed in Section 5 the results of this work indicate that the local adaptive filtering is applied

only in a few number (in the range of 1–7) of grid points around the corner of the aft wall once in a while.
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3.2. Stable interface conditions

In this paper we use mainly the penalty type interface conditions, i.e., the boundary conditions are

imposed only in a weak form [10,11]. Successful penalty interface conditions were constructed based on the

characteristics for the Navier–Stokes equations in [13–15] for spectral method and for high-order finite

difference methods in [4,21,22], and a conservative form of penalty interface conditions was proposed [5] for

the Legendre spectral method. Following the same idea as those works, we consider two interface condi-

tions, i.e.,

1. The averaging method, in which the interface conditions are obtained by averaging the state vectors of the

two adjacent domains.
2. The penalty method in conservative form in which the interface conditions are satisfied only in a weak

form, leaving the approximations not necessarily continuous at the interfaces.

In the following sections we will give the penalty interface conditions for the Euler and Navier–Stokes

equations and also show that the averaging method is a subset of the penalty method.

3.2.1. Conservative penalty interface conditions

Consider Eq. (2) with the inviscid part only, in the x-direction in the interval �26 x6 2, i.e.,

oq
ot

þ oF
ox

¼ 0: ð19Þ

For simplicity, assume that we have two domains in this interval with the interface at x ¼ 0, qIN ðx; tÞ denotes
the numerical solution in the left domain x6 0 and qIIMðx; tÞ in the right domain xP 0. Note that the nu-

merical solution is composed of two polynomials of different orders. The Legendre spectral penalty method

is given by

oqIN
ot

þ oIINF ðqINÞ
ox

¼ B qIN ð
�

� 2; tÞ
�
þ s1QN ðxÞ f þ qIN ð0; tÞ

� ��
� f þ qIIMð0; tÞ

� �	
þ s2QN ðxÞ f � qIN ð0; tÞ

� ��
� f � qIIMð0; tÞ

� �	
;

oqIIM
ot

þ oIIIMF ðqIIMÞ
ox

¼ B qIIMð2; tÞ
� �

þ s3QMðxÞ f þ qIIMð0; tÞ
� ��

� f þ qIN ð0; tÞ
� �	

þ s4QMðxÞ f � qIIMð0; tÞ
� ��

� f � qIN ð0; tÞ
� �	

;

ð20Þ

where B is a boundary operator at the end points, i.e., x ¼ �2 and IIN and IIIM are the Legendre interpolation
operators for the left and right domains, respectively. The positive and negative fluxes f þ and f � are

defined by

f � ¼
Z

SK�S�1 dq; ð21Þ

with

A � oE
oq

¼ SKS�1: ð22Þ

The Jacobian matrix A is assumed to be symmetric. Kþ and K� are the diagonal matrices composed of

positive and negative eigenvalues of A, respectively. QN ðxÞ and QMðxÞ are polynomials of orders N and M ,

respectively, such that they are zero at all the collocation points except the interface points x ¼ 0 (for

example QMðxÞ ¼ ð1� x=2ÞT 0
Mðx=2Þ=M2, 06 x6 2 where TMðxÞ is the Chebyshev polynomial of degree M).

The penalty parameters s1, s2, s3 and s4 are all constants. Since we are interested only in the interface
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conditions, we ignore the boundary operator B at x ¼ �2. Define the discrete scalar product

ðp; qÞN ¼
PN

i¼0 p
TðniÞqðniÞxi. xi is the weight in the Gauss–Lobatto–Legendre quadrature formula. With

the discrete product, the energy EðtÞ is defined by EðtÞ ¼ ðqIN ðx; tÞ; qIN ðx; tÞÞN þ ðqIIMðx; tÞ; qIIMðx; tÞÞM .

Theorem 1 (Conservativity). The scheme given in Eq. (20) is conservative if the penalty parameters satisfy the

following conditions:

s1x
I
N � s1x

II
M ¼ 1; s2x

I
N � s4x

II
M ¼ 1: ð23Þ
Proof. Based on the assumption above on the boundary operator B it suffices to consider only the penalty

terms to prove the theorem. Define the Legendre weight vectors ~xxI
N and ~xxII

M for XI and XII such that

~xxI
N ¼ xI

0; . . . ;x
I
N

� �
; ~xxII

M ¼ xII
0 ; . . . ;x

II
M

� �
:

Multiply the equations for qIN and qIIM in (20) by ~xxI
N and ~xxII

M . Then using the quadrature rule we haveZ 0

�2

oqIN
ot

dxþ
Z 2

0

oqIIM
ot

dx ¼ �
Z 0

�2

of I
N

ox
dx�

Z 2

0

of II
M

ox
dxþ s1 f þðqIN ð0; tÞÞxI

N

�
� f þðqIIMð0; tÞÞxII

0

	
þ s2 f �ðqINð0; tÞÞxI

N

�
� f �ðqIIMð0; tÞÞxII

0

	
þ s3 f þðqIIMð0; tÞÞxII

0

�
� f þðqIN ð0; tÞÞxI

N

	
þ s4 f �ðqIIMð0; tÞÞxII

0

�
� f �ðqIN ð0; tÞÞxI

N

	
: ð24Þ

By the fact that
R
ðofN=oxÞdx ¼ f þ þ f � and xII

0 ¼ xII
M the RHS of the above equation becomes

RHS¼ f þðqIN ð0; tÞÞ
�

� f þðqIIM ð0; tÞÞ
�
s1x

I
N

�
� s3x

II
M � 1

	
þ f �ðqIN ð0; tÞÞ
�

� f �ðqIIM ð0; tÞÞ
�
s2x

I
N

�
� s4x

II
M � 1

	
:

Thus if s1xI
N � s1xII

M ¼ 1 and s2xI
N � s4xII

M ¼ 1 then the LHS vanishes and this prove the theorem. �

Theorem 2. The energy is bounded by the initial energy of the system if the following conditions are satisfied [5]:

2xI
Ns1 6 1; 2xI

Ns2 P 1; 2xII
Ms3 6 � 1; 2xII

Ms4 P � 1;

xI
Ns1 � xII

Ms3 ¼ 1; xI
Ns2 � xII

Ms4 ¼ 1:
ð25Þ
3.2.2. The penalty method for the Euler equations

The penalty method in the case of the two-dimensional Euler equation is given by

oqN
ot

þ oINF ðqN Þ
ox

þ oINGðqN Þ
oy

¼ s1;3Qðx; yÞ½f þðqN Þ � f þðqM�Þ� þ s2;4Qðx; yÞ½f �ðqN Þ � f �ðqM�Þ�; ð26Þ

where qM� is the state vector of the adjacent domain at the interface of degreeM ,s1;3ðs2;4Þ denotes s1ðs2Þ and
s3ðs4Þ, respectively. s1 and s2 (s3 and s4) are the penalty parameters for the right(left) in x-direction and

top(bottom) in y-direction, respectively. Qðx; yÞ is a polynomial which vanishes at all of interior points of
the domain and is equal to 1 at the four interfaces. Note that the boundary operator B does not appear in

the scheme. Let A be the linearized Jacobian matrix (around a state vector q0) of two inviscid fluxes

A ¼ oF
oq

;
oG
oq

� �
�~nn





q0

; ð27Þ

where~nn ¼ ðnx; nyÞ is the unit outward normal vector. Since the matrix A is symmetric, there exists S such that

A ¼ SKS�1; ð28Þ
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where K is a diagonal matrix composed of eigenvalues of A. Then A ¼ Aþ þ A� and A� ¼ SK�S�1. K� is

defined as in previous section. Splitting A yields

f � ¼ A�q0; ð29Þ

where f � is obtained from the linearized state.

Remark 1. Since ~nn ¼ ðnx; nyÞ is taken to be outward normal vector, the stability condition (25) is now

modified and given as

2xI
Ns1 6 1; 2xI

Ns2 P 1; 2xII
Ms3 6 1; 2xII

Ms4 P 1;

xI
Ns1 þ xII

Ms4 ¼ 1; xI
Ns2 þ xII

Ms3 ¼ 1:
ð30Þ

The Jacobian matrix A and its eigenvalue matrix K are given in Appendix A.

For illustration, we consider the propagation of a Gaussian density peak at the center of rectangular

physical domains. The physical domain is partitioned with 16 sub-domains. The interface conditions be-

tween the domains are imposed according to the penalty Euler equations as discussed above. Characteristic

boundary conditions are imposed at the outer physical boundaries. The results presented in Fig. 1 indicate

that the penalty formulation works well. From the numerical experiments of this problem, we observe that
reflections can be created at the interface across the adjacent domains depending on the choice of the

penalty parameters. Thus proper choice of the penalty parameters should take into account reflections from

the interfaces. To demonstrate the above formulation for the Euler equations, we will return to this issue in

a future paper [16].

3.2.3. The penalty method for the Navier–Stokes equations

When dealing with the Navier–Stokes equation, we keep the penalty form for the Euler fluxes and add a

penalty term for the viscous fluxes. The stability of this procedure stems from the fact that the Jacobian
matrices for the full reactive Navier–Stokes equation can be symmetrized by the same similarity trans-

formation (see Appendix B). Thus we get the system

oqN
ot

þ oINF
ox

þ oING
oy

¼ oINFm
ox

þ oINGm

oy
þ s1;3Qðx; yÞ½f þðqN Þ � f þðqM�Þ�

þ s2;4Qðx; yÞ½f �ðqN Þ � f �ðqM�Þ� þ s6;8Qðx; yÞ½Am � qN � Am � qM��
þ s5;7Qðx; yÞ½Am � oqN � Am � oqM��: ð31Þ

Here f � are same as defined in the previous section and the Jacobian matrix vector Am is given by

Am ¼
oFm
oqx

nx;
oGm

oqy
ny

� �




q0

ð32Þ

and

q ¼ ðq; qÞ; oq ¼ ðqx; qyÞ; ð33Þ

where again q� and oq� denote the adjacent domains state vectors and their derivatives. Note that the

penalty terms Am � oq does not appear in [4,21,22]. The penalty parameters s5;7 and s6;8 are defined in the

same way as in the previous section. To seek stable penalty parameters we split the inviscid and viscous
fluxes and keep the stability conditions of s1;2;3;4 for the inviscid flux as in Theorem 2. The stability con-

ditions of s5;7 and s6;8 are given in the following theorem:



Fig. 1. The propagation of a density peak with the penalty Euler equations with 16 sub-domains: the initial condition (left) and the

solution (right) at t ¼ 0:03604 ms are given.
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Theorem 3. The penalty method for the Navier–Stokes equations (31) is stable if the penalty parameters sj,
j ¼ 1; . . . ; 4 are as in Theorem 2 and the rest satisfy

xNs6 6 0;

xNs6 � xMs8 ¼ 0;

1þ xNs5 � xMs7 ¼ 0;
1

xM

�
þ 1

xN

�
x2

Ms
2
7 � 2s7 þ 4xNs6 þ

1

xM
6 0: ð34Þ
Proof. As in the proof of Theorem 2, we assume that we have two domains and by multiplying the

equations by the state vectors, we get

1

2

d

dt
EðtÞ6 ½Inviscid� þ ½Viscous�; ð35Þ

where [Inviscid] and [Viscous] denote the terms from inviscid and viscous parts of the equation, respectively.
The conditions for s1;2 and s3;4 given in Theorem 2 assure that the first term [Inviscid] is negative. The

[Viscous] part at the interface is given by

½Viscous� ¼ qTAmq0 �
XN
i¼0

q0Ti Amq0ixi � qT�Amq0� �
XM
j¼0

q0
T

i�Amq0i�xj þ s5xN ½qTAmq0 � qTAmq0��

þ s7xM ½qT�Amq0� � qT�Amq0� þ s6xN ½qTAmq� qTAmq�� þ s8xM ½qT�Amq� � qT�Amq�; ð36Þ

where q0 denotes the derivative of q either in x- or y-direction, x is the Legendre weight, and Am is

Am ¼
oFm
oqx

;
oGm

oqy

� �
�~nn





q0

: ð37Þ
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Since all the eigenvalues of Am are non-negative, every term inside the summations in the above equation is

not negative, and we would like to keep the boundary terms. Thus we get the energy estimate such as

1

2

d

dt
EðtÞ6 ½qTAmq0 � xNq0TAmq0 � qT�Amq0� � xMq0T�Amq0�� þ s5xN ½qTAmq0 � qTAmq0��

þ s7xM ½qT�Amq0� � qT�Amq0� þ s6xN ½qTAmq� qTAmq�� þ s8xM ½qT�Amq� � qT�Amq�: ð38Þ

The RHS of (38) can be rewritten as

RHS ¼ uTBu; ð39Þ

where u ¼ ðq; q�; q0; q0�Þ and B is given by

B ¼
2r6Am �r6Am � r8AT

m ð1þ r5ÞAm �r5Am

�r6AT
m � r8Am 2r8Am �r7Am ð�1þ r7ÞAm

ð1þ r5ÞAT
m �r7AT

m �2xNAm 0

�r5AT
m ð�1þ r7ÞAT

m 0 �2xMAm

0BB@
1CCA ð40Þ

with 0 ¼ diagð0; 0; 0; 0Þ, r5 ¼ xNs5, r6 ¼ xNs6, r7 ¼ xMs7 and r8 ¼ xMs8. It is sufficient for the proof if B
can be shown to be negative semi-definite. This first leads to

xNs6 6 0; xNs6 ¼ xMs8; 1þ xNs5 � xMs7 ¼ 0: ð41Þ

Note that we use here the fact that Am is symmetrizable (see Appendix B). Taking into account (41), B
becomes

B ¼
2r6 �r7 �1þ r7

�r7 �2xN 0

�1þ r7 0 �2xM

0@ 1A: ð42Þ

To ensure negative semi-definiteness, detðBÞ6 0 and therefore

1

xM

�
þ 1

xN

�
r2
7 � 2

1

xM
r7 þ 4r6 þ

1

xM
6 0: ð43Þ

Thus

r�
7 6 r7 6rþ

7 ; ð44Þ

where

r�
7 ¼ xN

xM þ xN
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxNxMÞð1� 4r6ðxM þ xN ÞÞ

ðxN þ xMÞ2

s
:

Here we note that the condition that r6 6 f�1=½4ðxN þ xMÞ�g must be also satisfied in order for r7 to have

real root. This yields the conditions in the theorem. �

Note that these conditions are given independently of the local flow properties. And moreover, the

penalty parameters of each domain are constrained by its adjacent domain.

Remark 2. For ~nn to be outward normal vector the condition (34) is now given by

xNs6 6 0; xNs6 þ xMs8 ¼ 0; 1þ xNs5 þ xMs7 ¼ 0;
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1

xM

�
þ 1

xN

�
x2

Ms
2
7 þ 2s7 þ 4xNs6 þ

1

xM
6 0; ð45Þ

with conditions (30).

Remark 3. If the interval of each domain is different then scheme (20) is not conservative. Let DI and DII be

the domain intervals of XI and XII , respectively. The RHS in Theorem 1 becomes

RHS ¼ f þ qIN ð0; tÞ
� �

s1x
I
N

�
� s3x

II
M � DI

2

�
þ f þ qIIMð0; tÞ

� �
s3x

II
M

�
� s1x

I
N � DII

2

�
þ f � qIN ð0; tÞ

� �
s1x

2
N

�
� s4x

II
M � DI

2

�
þ f � qIIMð0; tÞ

� �
s4x

II
M

�
� s2x

I
N � DII

2

�
:

For any f �ð0; tÞ (note that f �ðqIN ð0; tÞÞ 6¼ f �ðqIIMð0; tÞÞ in general) the RHS vanishes only when DI ¼ DII .

Thus in order to refine a particular sub-domain but still maintain the conservativity, one can use p-re-
finement rather than h-refinement such that DI ¼ DII but N 6¼ M .

3.2.4. The averaging method

We show in this section that the averaging method can also be written as a penalty method with a
particular choice of the parameters.

3.2.5. Euler equations

We start first with the Euler equations. Consider the following penalty method:

oq
ot

þ oF
ox

þ oG
oy

¼ s1;3Qðx; yÞ½f 0þ ðqÞ � f 0þðq�Þ� þ s2;4Qðx; yÞ½f 0� ðqÞ � f 0�ðq�Þ�; ð46Þ

where

f 0� ¼ A�qx;A�qy
� �

�~nnjq0 ; ð47Þ

Note that the penalty terms use the derivative of the fluxes.

Theorem 4. If s1 ¼ s3 ¼ 1
2
, s2 ¼ s4 ¼ 1

2
, then the above penalty method (46) is equivalent to the averaging

method and is stable.

Proof. We prove the theorem at the interface x ¼ 0 with the rectangular domain and assume that N ¼ M . If

s1 ¼ s3 ¼ 1
2
and s2 ¼ s4 ¼ 1

2
, then the method becomes

oqI

ot






x¼0

¼ oqII

ot






x¼0

¼ � 1

2

oF I

ox

�
þ oF II

ox

�
� oG

oy
ð48Þ

and this is obviously equivalent to the averaging method. Here note that ðoGI=oyÞ ¼ ðoGII=oyÞ ¼ ðoGII=oyÞ.
Following the same procedure in Theorem 3, the energy equation becomes

1

2xN

d

dt
EðtÞ ¼ � 1

2xN
ðqIAqI � qIIAqIIÞj0 þ ðs1qI � s3qIIÞAþðqIx � qIIx Þj0 þ ðs2qI � s4qIIÞA�ðqIx � qIIx Þj0:

ð49Þ

Since s1 ¼ s3 ¼ 1
2
, s2 ¼ s4 ¼ 1

2
, and qIð0; y; tÞ ¼ qIIð0; y; tÞ, the RHS of the above equation vanishes and the

energy is bounded by the initial energy. �
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Remark 4 (Conservativity). If the condition is satisfied in the above theorem, scheme (46) is conservative.

Proof. By multiplying Eq. (46) by the weight vectors xI
N and xII

M and using the condition we haveZ 0

�2

oqIN
ot

dxþ
Z 2

0

oqIIN
ot

dx ¼ �
Z 0

�2

of I
N

ox
dx�

Z 2

0

of II
N

ox
dxþ 1

2
fxðqIN ð0; tÞÞxI

N

�
� fxðqIIN ð0; tÞÞxII

0

	
þ 1

2
fxðqIIN ð0; tÞÞxII

0

�
� fxðqIN ð0; tÞÞxI

N

	
:

Thus without the consideration of the outer boundaries, the RHS of the above equation becomes with

N ¼ M (see Remark 5)

RHS ¼ �f I
N qINð0; tÞ
� �

þ f II
N qIIN ð0; tÞ
� �

:

The above equation says that qIN ð0; tÞ ¼ qIIN ð0; tÞ and thus f I
N ðqIN ð0; tÞÞ ¼ f II

N ðqIIN ð0; tÞÞ. Thus the RHS
vanishes. �

The Navier–Stokes equations. The averaging method for the N–S equations can be presented as

oq
ot

þ oF
ox

þ oG
oy

¼ oFm
ox

þ oGm

oy
þ s1;3Qðx; yÞ½f 0þðqÞ � f 0þðq�Þ� þ s2;4Qðx; yÞ½f 0� ðqÞ � f 0�ðq�Þ�

þ s5;7Qðx; yÞ½Am � o2q� Am � o2q�� þ s6;8Qðx; yÞ½Am � oq� Am � oq��; ð50Þ

where o2q is the second derivative of q in either x- or y-direction.

Theorem 5. If s1 ¼ s3 ¼ 1
2
, s2 ¼ s4 ¼ 1

2
, s5 ¼ s7 ¼ 1

2
, and s6 ¼ �s8 ¼ �1=2xN , then the approximation is

continuous at the interface and the scheme (50) is stable.

Proof. If s1 ¼ s3 ¼ 1
2
, s2 ¼ s4 ¼ 1

2
, s5 ¼ s7 ¼ 1

2
, and s6 ¼ �s8 ¼ �1=xN , then (50) becomes

oq
ot

I 




x¼0

¼ oqII

ot






x¼0

¼ � 1

2

oF I

ox

�
þ oF II

ox

�
� oG

oy
þ 1

2

oF I
m

ox

�
þ oF II

m

ox

�
þ oGm

oy
þ 1

xN
Am � ðoqII � oqIÞ; ð51Þ

and this ensures the continuity of the approximation at the interface. If the approximation is smooth en-

ough such that the derivative of q is continuous at the interface then this becomes the averaging method.

Thus we get for the energy

1

2xN

d

dt
EðtÞ ¼ � 1

2xN
qIAqI

�
� qIIAqII � 2qIAmqIx þ 2qIIAmqIIx

�


x¼0

�
Z 0

�2

qIxAmqIx dx�
Z 2

0

qIIx AmqIIx dx

þ ðs1qI
�

� s3qIIÞAþ þ ðs2qI � s4qIIÞA�	ðqIx � qIIx Þ



x¼0

þ ðs5qI
�

� s7qIIÞAmðqIxx � qIIxxÞ
þ ðs6qI � s8qIIÞAmðqIx � qIIx Þ

	


x¼0

: ð52Þ

Since qIð0; y; tÞ ¼ qIIð0; y; tÞ, we have

1

2xN

d

dt
EðtÞ6 qI ½ðs1

�
� s3ÞAþ þ ðs2 � s4ÞA�� qIx

�
� qIIx

�
þ ðs5 � s7ÞAm qIxx

�
� qIIxx

�
� s6

�
� s8 þ

1

xN

�
Am qIx
�

� qIIx
��





x¼0

: ð53Þ

Thus if s1 ¼ s3 ¼ 1
2
, s2 ¼ s4 ¼ 1

2
, s5 ¼ s7 ¼ 1

2
, and s6 ¼ �s8 ¼ �1=2xN , the RHS vanishes. �
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Remark 5. In the above averaging theorems if N 6¼ M then the RHS of the equation of the energy estimates

does not vanish. For example if N 6¼ M the RHS of Eq. (49) becomes

RHS ¼ 1

2
xNqIN
�

� xMqIIN
�
Aþ qIx

�
� qIIx

�


x¼0

þ 1

2
xNqIN
�

� xMqIIN
�
A� qIx

�
� qIIx

�
jx¼0

¼ 1

2
qINðxN � xMÞA qIx

�
� qIIx

�
jx¼0;

where we use that qIN ð0; tÞ ¼ qIIMð0; tÞ and s1 ¼ s2 ¼ s3 ¼ s4 ¼ 1
2
. Thus if N 6¼ M it does not necessarily

vanish. Thus with Eq. (3) the averaging method requires that DI ¼ DII and N ¼ M .

3.2.6. Adaptive averaging

When the penalty interface condition is applied to the linear equations, the differences of the state vectors
or their derivatives at the interfaces are spectrally so small that no additional conditions are needed. When,

however, it is applied to highly non-linear problems such as the current reactive system, the differences at

the interface can grow in time. Especially the growth of the differences in the first derivatives can induce the

numerical instability. This implies that the constraint on the penalty parameters is, in fact, derived from

the stability conditions of the linearized equations and it does not ensure the accuracy when it is applied to

the non-linear problem due to the fact that the time interval cannot be arbitrarily small. To ensure the

stability of the scheme at some particular collocation points where the solution become singular and un-

stable, we use the averaging method adaptively at selective grid points. In particular, we switched from the
penalty method to the averaging when the following criteria was satisfied:

max
jq� q�j
jqþ q�j

;
jT � T�j
jT þ T�j

� �
PCave; ð54Þ

or

jP � P�j
jP þ P�j

PCave; ð55Þ

where Cave is a non-negative constant. Note that Cave ¼ 0 leads to the averaging method, whereas a large
Cave results in the penalty method. For the value of Cave used in this paper, we found out that there were

very few points in which one needs to switch from the penalty to the averaging procedure. Moreover, this

happened only at very few time steps.
4. The cavity system and numerical configurations

In this section we describe the set up of the simulations of the recessed cavity flame-holders by the

spectral multidomain technique presented above. The main goal of this experiment is to investigate how the

geometry of the aft wall affects the flame stability.

4.1. Physical setup

In the SCRAMJet community, a cavity with the length-to-depth ratio L=D < 7 � 10 is usually categorized

as an �open� cavity since the upper shear layer re-attaches at the back face [2]. In this work, we choose the L=D
of the baseline cavity to be 4 and thus the open cavity system is considered. The coordinates of the cavity are
ð7;�1 cmÞ for the upper left and ð11;�2 cmÞ for the right bottom corners of cavity. With the length of the

neck of the cavity fixed to be 4 cm, we consider three different angles of the right corner of the floor of the
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cavity (60�, 45� and 30�), we then compare each one with the case of the rectangular aft wall. The fluid

conditions are given as followings; the free stream Mach number M ¼ 1:91, total pressure P ¼ 2:82 ðatmÞ,
total temperature T ¼ 830:6 (K) and normalized Reynolds number Re ¼ 3:9� 107 ðm�1Þ. Note that the

Reynolds number is here normalized and has a unit of ½length��1
, also the Reynolds number based on the

cavity dimensions is Oð105Þ. The boundary layer thickness scale is d ¼ 5� 10�4 (m), and finally, the wall

temperature is Tw ¼ 460:7835 (K). The initial configuration for the baseline cavity system is shown in Fig. 2.
4.2. Numerical setup

We have conducted two different experiments for each of the following cases: (1) non-reacting cold flow,

and (2) reacting flow. We use nine and 17 sub-domains for both cases. For the outflow conditions at the exit

of the system and at the upper boundary, we mainly use a semi-infinite mapping in order to reduce the
possible reflections at the boundaries. The characteristic boundary conditions are also applied and will be

discussed in the next section and compared to the mapping. For the case of the reactive flows, the cavity

was initially filled with hydrogen fuel with fuel-to-total gas ratio of 0.5. The order of the polynomial of

approximation in y-direction in the domain beside the wall is taken large enough to resolve the boundary

layer well. Finally the adaptive filtering is turned on if the mass fraction of hydrogen and oxygen exceed the

range of �0:096 fH2
6 1:09;�0:026 fO2

6 0:25 and the temperature exceeds the range of 300 ðKÞ6
T 6 3500 ðKÞ. As the shear layer and the complex features of the flows develop, the adaptivity criteria for

applying the local smoothing is satisfied at some points. In the calculations, we use the third- and second-
order local filtering for the non-reactive and reactive flows respectively. It turns out that the local

smoothing was applied in very few points at the upper corner of the cavity wall.

For the adaptive averaging, we use the criteria constant Cave such that the difference of the state vectors

(or pressure) between the two adjacent domains is less than 10%. In Fig. 3 the penalty Navier–Stokes

equations were considered for the non-reactive cold flows. As evident from the contours of the density, the

approximations were well matched at the interfaces. Here the outer boundary was approximated by using

the characteristic conditions of the inviscid fluxes. The adaptive averaging, with the given adaptivity

conditions above, took place at only a few points. The characteristic boundary conditions using the inviscid
fluxes yield good results for both the problems of the density peak propagation and the non-reactive cold

flows. As in Fig. 1, we observe that there exist penalty parameters satisfying the stability conditions that

may induce reflecting modes at the interfaces [16].
Fig. 2. The initial configuration for the baseline cavity system.



Fig. 3. The non-reactive cold flows with the penalty Navier–Stokes equations: the density contours are given in this figure at

t ¼ 0:25 ms. Seventeen domains are used and the boundaries of each domain are shown.
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4.3. Temporal and spatial approximation

We use the third-order TVD Runge–Kutta scheme [26] for the time integration. For the CFL condition

we use the following restriction of the time interval Dt such that:

Dt6CFLminðDtE;DtD;DtC;DtP Þ;

where CFL is a positive constant and the subscripts E, D, C, and P denote the conditions by the convection,

diffusion, chemical reaction and penalty parts of the governing equation of Eq. (31), respectively. And the
time interval Dt is Oð1=N 4Þ. In the present work, we use the condition that N ¼ M and DI ¼ DII in order to

make the method conservative both for the penalty and averaging interface treatment and reduce the

possible reflecting modes induced at the interfaces as described in the previous section. For the spatial

approximation, we first determine the mesh size in y-direction in order to resolve the boundary layer

properly. The channel size lc over the cavity and the boundary layer thickness scale d are given by

lc ¼ 4� 10�2; d ¼ 5� 10�4:

By splitting the channel domain into n sub-domains, we determine the mesh size N in y-direction such that

the boundary layer is well resolved as

dN � lc=n
N 2

6 d:

In this work we use n ¼ 4 and N ¼ 49, and thus we obtain d=dN ¼ 120:05. Each domain is collocated by

either 49 or 65 number of grid points in x- or y-direction. Thus the time interval Dt is about Oð�8Þ.
5. Results and discussion

5.1. Local adaptive filtering and adaptive averaging

In Section 3.1 we localize the filtering order c in Eq. (18). Practically we define the local adaptive filtering

with constant c such as [27]

rðxÞ ¼ expð�ajxjc=cÞ; ð56Þ
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where c is a positive controlling function such that cP 1 and a ¼ � ln � with the machine zero �. By def-

inition if c ¼ 1 for all x, no local filtering is done but only the global filtering is carried out over the entire

domain. At a certain grid point x ¼ xi, the controlling function is defined as

c ¼ 1 if qlðxi; tÞ6 q6 quðxi; tÞ;
> 1 otherwise:



ð57Þ

Here q can be the mass fraction of each species fi and/or temperature T and ql and qu denote the lower and
upper tolerance limits of q. When the adaptivity condition represented by the above is satisfied at xi, heavier
filter than the global filter of order c is applied at x ¼ xi. A local heavy smoothing is done locally where the

sharp gradients inducing the numerical instability exist.

5.1.1. Global filtering

The method of determining c has to be rather state-of-the-art if the solution is highly nonlinear and thus
the exact solution is in general not known. For the current study we determine c based on the pressure-

fluctuation-capturing constraint by tracing the time-dependent pressure fluctuations inside the cavity. Ex-

periments have shown that the highly oscillating non-transient pressure fluctuations in time are obtained

with the flow conditions such as the ones used in this work [2,25,29]. Thus one needs to use c that enables
the method to capture these pressure fluctuations. If c is taken to be too small, the method becomes too

dissipative and, consequently, the pressure fluctuations decay with time, eventually yielding only the steady

state solution inside the cavity. We determine c empirically such that

c > c0;

where c0 is the threshold smoothing order with the given N , ensuring that the method captures the highly

oscillating non-transient pressure fluctuations inside the cavity. If c6 c0, the method is too dissipative and

the method remains stable with no need of the local smoothing explained in the following. Thus the above

criteria is the necessary condition for the method to be able to capture the pressure fluctuations. By the

numerical experiments we find that the threshold order c0 exists in the following intervals:

4 < c0 < 6;

for the given N � 49; 65. If c6 4, the method turns too dissipative whereas, if cP 6, we clearly obtain the

highly oscillating non-transient pressure fluctuations similar to the ones that we get through the laboratory
experiments. Fig. 4 shows the pressure history when the heavy global filter is applied (in this case, the

fourth-order filter was used). Unlike the case illustrated in Fig. 6, where the sixth-order global filter is used,

the pressure fluctuations eventually decay out and a large recirculation zone is formed inside the cavity
Fig. 4. Pressure history of the non-reactive flows with the use of the fourth-order filter: the left panel represents the pressure history at

the center of cavity and the right panel shows the left panel in a smaller scale. Each panel shows the case of 90� and 30� cavity walls

from top to bottom. Note that the scale of the right panel is different from the left.
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without any severe pressure fluctuations. Note that the scale in the left panel shown is the same as in Fig. 6

while the right panel is shown in a smaller scale for a closer look. This figure shows that the large recir-

culation zone(s) formed inside the cavity obtained by the lower order numerical scheme is induced not

physically but rather artificially due to the heavy numerical dissipations. This is clearly shown in Fig. 5. In

this figure, a large recirculation zone is observed – this zone is formed earlier than these streamlines are

captured – when the fourth-order filter is used (left figure) and an almost steady state is already reached as

the pressure history indicates in Fig. 4. We find from the numerical results that the large recirculation is

very stable once it forms. This large recirculation and the steady state solutions are not observed in the case
of c ¼ 6 (right). For the case of c ¼ 6, not the large single recirculation zone but multiple smaller scale

vortex circulations are formed and they are interacting with each other, never reaching the steady state with

time. This result shows that high order filter should be used for these sensitive problems in order to

minimize the effect of the numerical dissipation.

Here we note that if c > 6, the pressure history profiles remain similar to that of c ¼ 6. For this reason, in

the present study the sixth-order global smoothing (c ¼ 6) is used.

5.1.2. Local adaptive filtering

We observe the method is unstable with c > 6 when c ¼ 1 for all the collocation points. Thus c is

adaptively determined by Eq. (57). In this work we choose the local controlling function c at the desired

points such that c ¼ 2 or c ¼ 3 to reduce the magnitude of the oscillations sufficiently enough at those

points. Although a heavy smoothing is applied, the desired flow structures and the pressure oscillations are

expected not to be disturbed since it is applied only at a small number of points. Table 1 shows the fre-

quency of the local filtering every 10 time integration steps starting from t ¼ 0:240039� 10�2 that is the

time about the middle of the Fig. 6.

For this table, we use the data from the simulation of the non-reactive rectangular cavity flows with nine
sub-domains. The corner of the aft wall is surrounded by the sixth, seventh and ninth domains. The second

column of Table 1 shows for which sub-domain the local filter is applied and, in the parenthesis, the table

shows how many times it is applied. The third column shows the ratio of the total number of the local fil-

tering occurrence Nf to the total collocation points Nt of the given domain(s). The cavity domain (domain 9)

has 65� 65 collocation points, the domains 2 and 7 have 65� 49 points and the others 49� 49. Thus the total

collocation points of the entire domain is 25,001. As shown in the table, the local filtering occurs only at a few

points and every local smoothing occurs in the domains 6, 7 or 9 where the corner of the aft wall exists.

5.1.3. Adaptive averaging

For the adaptive criteria in Eqs. (54) and (55), we use Cave ¼ 10. As noted in Section 3 if Cave ¼ 0 the

method is equivalent to the averaging scheme while if Cave ! 1 it is equivalent to pure penalty method

without averaging. In Table 2 the frequency of the adaptive averaging every 10 time steps of the simulation

of non-reactive cavity flow at t ¼ 5:044 ls is provided. For this example we use Cave ¼ 1 and s1 ¼ �1=2xN
Fig. 5. Streamlines: the left figure shows the streamlines at t ¼ 1:685 ms for the global filtering order c ¼ 4 and the right at t ¼ 2:38 ms

for c ¼ 6.



Fig. 6. Pressure history for non-reactive flows: the left panel represents the pressure history at the center of the cavity and the right

panel at the middle of the floor of the cavity. Each panel shows the case of 90�, 60�, 45� and 30� cavity walls from top to bottom.

Table 1

Frequency of the local adaptive filtering for the non-reactive rectangular cavity flows

Step interval Domain (frequency) Nf=Nt

62,310–62,320 6(3) 3/2401

62,320–62,330 N/A 0

62,330–62,340 N/A 0

62,340–62,350 N/A 0

62,350–62,360 N/A 0

62,360–62,370 N/A 0

62,370–62,380 9(1) 1/4225

62,380–62,390 NA 0

62,390–62,400 9(2) 2/4225

62,400–62,410 N/A 0

62,410–62,420 9(1) 1/4225

62,420–62,430 9(1) 1/4225

62,430–62,440 9(2) 2/4225

62,440–62,450 9(3) 3/4225

62,450–62,460 7(1), 9(3) 4/7410

62,460–62,470 7(1) 1/3185

62,470–62,480 7(3), 9(4) 7/7410

62,480–62,490 N/A 0

62,490–62,500 7(6) 6/3185

62,500–62,510 7(1) 1/3185

62,510–62,520 7(2) 2/3185

62,520–62,530 7(2) 2/3185

62,530–62,540 7(2) 2/3185

62,540–62,550 7(2), 9(1) 3/7410

62,550–62,560 7(1), 9(1) 2/7410

62,560–62,570 7(2), 9(1) 3/7410

62,570–62,580 9(2) 2/4225

62,580–62,590 7(2), 9(2) 4/7410

62,590–62,600 9(2) 2/4225

Total collocation points¼ 25,001.
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Table 2

Frequency of the adaptive averaging for the non-reactive rectangular cavity flows during 10 time steps

Domain Frequency Nb

1 2 228

2 8 196

3 8 196

4 6 196

5 10 196

6 12 196

7 14 196

8 4 228

9 2 228

10 14 196

11 16 196

12 12 196

13 6 196

14 8 196

15 5 196

16 1 228

17 0 196
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and s2 ¼ N=2xN with 17 sub-domains. The second column shows how many times the adaptive averaging is

applied during the given interval and the third column gives the number of collocation points at the in-

terfaces of the specific sub-domain. Since Cave ¼ 1 < 10 for this case, we note that more frequent averaging

should be used than the case of Cave ¼ 10.

5.2. Pressure history

Fig. 6 shows the pressure history of the non-reactive cold flows for the various angles of the aft wall at
two different locations inside the cavity, i.e., at the center, ðx; yÞ ¼ ð8:5; 1:5 cmÞ, and at the middle of the

floor ðx; yÞ ¼ ð8:5;�1:9 cmÞ.
These figures show that the pressure fluctuations in cavities with lower angle of the aft are weaker than

in cavities with higher angles. It is also shown that the attenuation of the pressure fluctuations are ob-

tained both at the center and the middle of the floor of the cavity. It is interesting to observe that the

patterns of the pressure fluctuations for a given angle at different locations are different depending on the

angle. In the case of the 30� aft wall, the pressure fluctuations are almost the same at the two locations

considered whereas the case of 45� shows a difference in the patterns of the pressure fluctuations between
the two locations. The pressure fluctuations at the bottom grows greater than that at the center after some

time.

Fig. 4 shows the pressure history when the heavy global filter is applied (in this case, the fourth-

order filter was used). Unlike the previous case illustrated in Fig. 6, where the sixth-order global filter

is used, the pressure fluctuations eventually decay out and a large recirculation zone is formed inside

the cavity without any severe pressure fluctuations. Note that the scale in the left panel shown is the

same as in Fig. 6 while the right panel is shown in a smaller scale for a closer look. This figure

shows that the large recirculation zone(s) formed inside the cavity obtained by the lower order nu-
merical scheme is induced not physically but rather artificially due to the heavy numerical dissipa-

tions. This is clearly shown in Fig. 5. In this figure a large recirculation zone is observed – this zone

is formed earlier than this streamlines are captured – when the fourth-order filter is used (left figure)

and an almost steady state is already reached as the pressure history indicates in Fig. 4. We find from



Fig. 7. Pressure history for reactive flows: the left panel represents the pressure history at the center of cavity and the right panel at the

middle of the floor of cavity. Each panel shows the case of 90� and 30� cavity walls from top-to-bottom.

Fig. 8. The water contour of the reactive flows: the water density contour is given in the left figure and its streamlines in the right figure

at t ¼ 0:135 ms.
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the numerical results that the large recirculation is very stable once it forms. This large recirculation

and the steady state solutions are not observed in the case of c ¼ 6 (right). For the case of c ¼ 6

instead of the large single recirculation zone, smaller scale vortex circulations are formed and they are

interacting with each other, never reaching the steady state with time. This result shows that for these
sensitive problems, high order accuracy should be used in order to minimize the effect of the nu-

merical dissipation.

Figs. 7 and 8 show the case of the reactive flows for the 90� and 30� aft walls. Similar features of the

pressure fluctuations are shown as in the non-reactive flows. However the pressure fluctuations are much

more attenuated for both the 90� and 30� walls than in the non-reactive cold flows (Fig. 7). In the reactive

cases hydrogen fuel, which was initially supplied inside the cavity was consumed. As time elapses, the fuel is

consumed out with the production of the water for these cases (Fig. 8).

These results demonstrate that simulations of cold flows do not necessarily shed light on the behavior of
reactive flows.
5.3. Flow fields

5.3.1. Non-reactive cold flow

Fig. 9 shows the density contours and streamlines for the 90�, 60�, 45� and 30� walls at the instant

time t ¼ 2:4 ms. As shown in the figure, the shear layer is becoming weaker as the degree of angle of the

aft wall and the flow fields are becoming more regularized for the case of the lower angle. And note that

the density compression at the corner of the aft wall is also becoming weaker for the more slanted wall

cases.



Fig. 9. The density contour and the streamline of the non-reactive flows: the left column shows the density contour for 90�, 60�, 45�
and 30� walls from top to bottom and the right column shows the corresponding streamlines at t ¼ 2:43 ms. The maximum contour

level is 1.8 and the minimum 0.5 with the level step size 50.
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Fig. 11 shows the streamlines corresponding to the each case of Fig. 10. Note that compared to the non-

reactive cases, the shear layers are less developed for the reactive cases. As the figures of the pressure

fluctuation history and Fig. 11 indicate, the shear layers are weak for both the 90� and the 30� walls in the

reactive cases.



Fig. 10. The water contour of the reactive flows: the water density contours are given in the left figures for 90� wall and 30� wall in the

right figures. From top to bottom the instant times t are 0.175, 0.275, 0.945 and 2.26 ms. The maximum and minimum contour levels

are 0.01 and 0.23, respectively, with the number of levels 50.
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5.3.2. Reactive flow

Fig. 10 shows the water contour inside the cavity for the different angles at different time. Here we define

the region where the flames are generated to be same as the region where the water is produced. As the

hydrogen fuel is consumed, the water is produced and starts to be expelled from the cavity to the main
channel. The flame-holding efficiency is enhanced if the chemical radicals (water in this case) are stably

circulating and long lasting before they are expelled from the cavity. Fig. 10 shows that the lower angled aft

wall (30� in this case) maintains more water than the 90� wall at a given time. The figure also shows that the

lower angled aft wall holds the flame (water in this case) longer than the 90� wall – in the last figure in



Fig. 11. The streamlines for the reactive flows: the streamlines for 90� wall are shown in the left figures and the 30� wall in the right.

From top to bottom the times t are 0.175, 0.275, 0.945 and 2.51 ms.
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Fig. 10 at t ¼ 2:26 ms, the most water is expelled and only the small amount is left in the left corner while

the 30� wall cavity holds the water still throughout the cavity. These results imply that the flame-holding

efficiency can be increased by lowering the angle of the aft wall of the cavity.
Appendix A. The similarity transform matrices and the eigenvalues of the inviscid flux with chemical species

A.1. Air model without combustion

First consider the ideal gas composed of two chemically non-reactive species (for the ideal mono-atomic

gas K the diagonal matrix and S, the diagonalizer, were given in [15]). K is given by

K ¼ diagð~UU �~nnþ c; ~UU �~nn; ~UU �~nn; ~UU �~nn� c; ~UU �~nn; ~UU �~nnÞ;



W.-S. Don et al. / Journal of Computational Physics 192 (2003) 325–354 349
where ~UU ¼ ðu; vÞ,~nn ¼ ðnx; nyÞ is an unit outward normal vector at the interface and c is a local sound speed.

For simplicity we assume that

q
Z T

0

�CCpðsÞds� P � qCvT :

This form is used only in the analysis, as mentioned in Section 3.1, Cpi is expressed as a fourth-order

polynomial in the temperature T . The nonlinear expression of Cpi makes it difficult to derive the Ja-

cobian matrices of the fluxes. Our simplifications is a results of assuming small coefficients of the high

order terms of the polynomial. In the actual simulations Cv is computed appropriately using the em-
pirical law and assumed temperature independent at each linearization step. With this assumption S is

given by

S ¼

1 1 0 1 0 0

uþ cnx u �ny u� cnx 0 �ny
vþ cny v nx v� cny 0 nx

H þ c~UU �~nn 1
2
~UU � ~UU ~UU �~kk H � c~UU �~nn bc2 ~UU �~kk þ c

f1 a12 0 f1 a12 �c R2

Rh

f2 a21 0 f2 a21 c R1

Rh

0BBBBBBB@

1CCCCCCCA;

where H ¼ ðE þ P Þ=q, Ri ¼ R=ðMiCvÞ, Rh ¼ R1h02 � R2h01, Rv ¼
P2

i¼1 fiRi, b ¼ �1=ðRv þ R2
vÞ, the tangential

vector ~kk ¼ ð�ny ; nxÞ and

aij ¼ Rv

h0j
ðRih0j � Rjh0i Þ

; aji ¼ Rv
h0i

ðRjh0i � Rih0j Þ
:

Note that Rv ¼ c� 1 for the mono-atomic ideal gas with c, the ratio between the heat capacities Cp and Cv.

A.2. Air model with combustion

Consider now the equations the Euler equations with four reactive species. In this case K and S are given

by

K ¼ diagð~UU �~nnþ c; ~UU �~nn; ~UU �~nn; ~UU �~nn� c; ~UU �~nn; ~UU �~nn; ~UU �~nn; ~UU �~nnÞ

and

S ¼

1 1 0 1 0 0 1 1

uþ cnx u �ny u� cnx 0 �ny u u
vþ cny v nx v� cny 0 nx v v

H þ c~UU �~nn 1
2
~UU � ~UU ~UU �~kk H � c~UU �~nn bc2 ~UU �~kk þ c 1

2
~UU � ~UU 1

2
~UU � ~UU

f1 a12 0 f1 a1234 R1234 a13 a14
f2 a21 0 f2 a2134 R2134 0 0
f3 0 0 f3 a3124 R3124 a31 0

f4 0 0 f4 a4123 R4123 0 a41

0BBBBBBBBBB@

1CCCCCCCCCCA
;

where all the variables are same as in the two species case except that



350 W.-S. Don et al. / Journal of Computational Physics 192 (2003) 325–354
aijkl ¼ �ijkl h0j
�

� h0k þ h0l
�
Rv=Rh

and

Rijkl ¼ ��ijklðRj � Rk þ RlÞc=Rh;

with

Rh ¼
X4

i¼1

�ijklRi h0j
�

� h0k þ h0l
�
; i; j; k; l ¼ 1; 2; 3; 4; j < k < l:

�ijkl is the permutation symbol and Rv ¼
P4

i¼1 fiRi. K and S are based on the time dependent local spatial

quantities at a given time. f � is calculated at the interface points at each time.
Appendix B. The symmetrizability of the coefficient matrices of the Navier–Stokes equations with chemical
species

In [1] it had been proven that the coefficient matrices of the Navier–Stokes equations (expressed in the

primitive form), of the ideal gas can be simultaneously symmetrized. In [12,15] the same result was dem-

onstrated for the conservative form of the equations. Here we show that it is also true for the Navier–Stokes

equations of the combustible gas with multiple chemical species in two dimension.

Rewrite the linearized Navier–Stokes equations (2) in conservative form without the chemical source

term as

oq
ot

þ A
oq
ox

þ B
oq
oy

¼ C
o2q
ox2

þD
o2q
oxoy

þ E
o2q
oy2

;

where

A ¼ oF
oq

; B ¼ oG
ox

; C ¼ oFm
oqx

; D ¼ o

oqy
þ oGm

oqx
and E ¼ oGm

oqy
:

It is sufficient to consider the chemically interacting two chemical species. The coefficient matrices are given

by

A ¼

0 1 0 0 0 0

v� u2 ð2� RvÞu �Rvv Rv w1 w2

�uv v u 0 0 0

uðv� HÞ H � Rvu2 �Rvuv ð1þ RvÞu uw1 uw2

�uf1 f1 0 0 u 0

�uf2 f2 0 0 0 u

0BBBBBB@

1CCCCCCA;
B ¼

0 0 1 0 0 0

�uv v u 0 0 0

v� v2 �Rvu ð2� RvÞv Rv w1 w2

vðv� HÞ �Rvuv H � Rvv2 ð1þ RvÞv vw1 vw2

�vf1 0 f1 0 v 0

�vf2 0 f2 0 0 v

0BBBBBB@

1CCCCCCA;
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C ¼

0 0 0 0 0 0

�ur1 r1 0 0 0 0

�vr2 0 r2 0 0 0

�R12 uðr1 � r3Þ vðr2 � r3Þ r3 d1 d2
0 0 0 0 0 0
0 0 0 0 0 0

0BBBBBB@

1CCCCCCA;

D ¼ ðr1 � r2Þ

0 0 0 0 0 0

�v 0 1 0 0 0
�u 1 0 0 0 0

�2uv v u 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0BBBBBB@

1CCCCCCA;

E ¼

0 0 0 0 0 0

�ur2 r2 0 0 0 0

�vr1 0 r1 0 0 0

�R21 uðr2 � r3Þ vðr1 � r3Þ r3 d1 d2
0 0 0 0 0 0

0 0 0 0 0 0

0BBBBBB@

1CCCCCCA;

where
U2 ¼
1

2
~UU � ~UU ; H ¼ E þ P

q
; r1 ¼

2lþ k
q

; r2 ¼
l
q
; r3 ¼ l

�CCp

qPrCv
;

f ¼ P
qRv

; v ¼ RvðU2 � fÞ; wi ¼ fRi � Rvh0i ; di ¼ �hifi
l
qSc

; ~ddi ¼ � di
r3

;

n ¼ E
q
þ
X2

i¼1

ðhi � ~ddiÞfi; h ¼ n� 2U2 and Rjk ¼ rju2 þ rkv2 þ r3h:
To find the symmetrizer for A, B, C, D and E, we first consider the similarity transform matrix SP of C

such that

S�1
P CSP ¼ KC;

where KC is a diagonal matrix composed of the eigenvalues of C. The subscript P denotes that this

matrix is adopted from the parabolic portion of the equations [1]. The diagonal matrix KC of C is given

by

KC ¼

0 0 0 0 0 0

0 r1 0 0 0 0

0 0 r2 0 0 0

0 0 0 r3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0BBBBBB@

1CCCCCCA:
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The diagonalizer SP is composed of the eigenvectors of C, SP and its inverse S�1
P are given by

SP ¼

1 0 0 0 0 0
u 1 0 0 0 0

v 0 1 0 0 0

n u v 1 ~dd1 ~dd2
0 0 0 0 1 0

0 0 0 0 0 1

0BBBBBB@

1CCCCCCA; S�1
P ¼

1 0 0 0 0 0
�u 1 0 0 0 0

�v 0 1 0 0 0

�h �u �v 1 �~dd1 �~dd2
0 0 0 0 1 0

0 0 0 0 0 1

0BBBBBB@

1CCCCCCA:

The similarity transform induced by SP , transforms the coefficient matrices A, B, C, D and E to

S�1
P ASP ¼

u 1 0 0 0 0

a u 0 Rv g1 g2
0 0 u 0 0 0

0 Rvf 0 u 0 0
0 f1 0 0 u 0

0 f2 0 0 0 u

0BBBBBB@

1CCCCCCA;
S�1
P BSP ¼

v 0 1 0 0 0

0 v 0 0 0 0

a 0 v Rv g1 g2
0 0 Rvf v 0 0

0 0 f1 0 v 0

0 0 f2 0 0 v

0BBBBBB@

1CCCCCCA;
S�1
P DSP ¼

0 0 0 0 0 0

0 0 1 0 0 0
0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0BBBBBB@

1CCCCCCA;
S�1
P ESP ¼

0 0 0 0 0 0

0 r2 0 0 0 0

0 0 r1 0 0 0

0 0 0 r3 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0BBBBBB@

1CCCCCCA;

where a ¼ Rvh� v and gi ¼ Rvðedidi þ h1f1Þ þ wi.

Introducing a symmetrizing diagonal matrix, QTQ such as

QTQ ¼

a 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
f 0 0

0 0 0 0 g1
f1

0

0 0 0 0 0 g2
f2

0BBBBBB@

1CCCCCCA
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we have symmetrized all the coefficient matrices, i.e.,

QTQS�1
P ASP ¼ QTQS�1

P ASP

� �T
;

QTQS�1
P BSP ¼ QTQS�1

P BSP

� �T
;

QTQS�1
P CSP ¼ QTQS�1

P CSP

� �T
;

QTQS�1
P DSP ¼ QTQS�1

P DSP

� �T
;

QTQS�1
P ESP ¼ S�1

P ESP :
Appendix C. Constants for chemical models

Here we provide constants used in the chemical model for the current numerical experiment. Table 3

gives the constants used to get the approximation of the specific heat Cpi of ith species in the fourth-order

polynomial of T , i.e.,

Cpi ¼ ðc1 þ T ðc2 þ T ðc3 þ T ðc4 þ c5T ÞÞÞÞR=Mi;

where R is a gas constant, and Mi is a molecular weight of ith species [20].

Table 4 gives the molecular weight and specific enthalpy for each chemical species and Table 5 gives the

reference dynamic viscosity, temperature constants T and S in Wilke�s law [28].
Table 3

Coefficients for the approximation of the specific heat Cpi

O2 H2 H2O N2

c1 (mol�1) 3.0809 3.4990 3.4990 3.1459

c2 (mol�1) 0.16962E) 2 )0.18651E) 3 0.14878E) 2 0.99154E) 3

c3 (mol�1) )0.76334E) 6 0.46064E) 6 0.87544E) 7 )0.22912E) 6

c4 (mol�1) 0.17140E) 9 )0.13157E) 9 )0.11499E) 9 0.12181E) 10

c5 (mol�1) )0.14116E) 13 0.11679E) 13 0.13495E) 13 0.11024E) 14

Table 4

Molecular weights and specific enthalpy

O2 H2 H2O N2

M (mol�1) 32.000 2.016 18.016 28.016

h0 (J/kg) )272918.21 )4280070.46 )13973684.55 )302736.23

Table 5

Constants for Wilke�s law

O2 H2 H2O N2

l0 (kg/m/s) 0.1919E) 4 0.08411E) 4 0.1703E) 4 0.1663E) 4

T0 (K) 273.111 273.111 416.667 273.111

S (K) 138.889 96.6667 861.111 106.667
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